Role of dimethyl fumarate in the treatment of glioblastoma multiforme: A review article

  • Reza Ahmadi-Beni Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
  • Ali Najafi Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
  • Seyed Mehrdad Savar School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Niayesh Mohebbi Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Alireza Khoshnevisan Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
Keywords: Brain Neoplasms, Glioblastoma, Fumarates, Dimethyl Fumarate, Neuroprotective Agents, Drug Repurposing

Abstract

Glioblastoma multiforme (GBM), the most frequent malignant and aggressive primary brain tumor, is characterized by genetically unstable heterogeneous cells, diffused growth pattern, microvascular proliferation, and resistance to chemotherapy. Extensive investigations are being carried out to identify the molecular origin of resistance to chemo- and radio-therapy in GBM and find novel targets for therapy to improve overall survival rate. Dimethyl fumarate (DMF) has been shown to be a safe drug with limited short and long-term side effects, and fumaric acid esters (FAEs), including DMF, present both anti-oxidative and anti-inflammatory activity in different cell types and tissues. DMF has also anti-tumoral and neuroprotective effects and so it could be repurposed in the treatment of this invasive tumor in the future. Here, we have reviewed DMF pharmacokinetics and different mechanisms by which DMF could have therapeutic effects on GBM.

References

1. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152: 63-82.
2. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23(10): 1985-96.
3. Kast RE, Boockvar JA, Bruning A, Cappello F, Chang WW, Cvek B, et al. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013; 4(4): 502-30.
4. Khoshnevisan A. An overview of therapeutic approaches to brain tumor stem cells. Med J Islam Repub Iran 2012; 26(1): 31-40.
5. Anton K, Baehring JM, Mayer T. Glioblastoma multiforme: overview of current treatment and future perspectives. Hematol Oncol Clin North Am 2012; 26(4): 825-53.
6. Ahmadi-Beni R, Khoshnevisan A. An overview of crucial genes involved in stemness of glioblastoma multiforme. Neurochemical Journal 2017; 11(4): 259-65.
7. Safari M, Khoshnevisan A. Cancer Stem Cells and Chemoresistance in Glioblastoma Multiform: A Review Article. J Stem Cells 2015; 10(4): 271-85.
8. Mohebbi N, Khoshnevisan A, Naderi S, Abdollahzade S, Salamzadeh J, Javadi M, et al. Effects of atorvastatin on plasma matrix metalloproteinase-9 concentration after glial tumor resection; a randomized, double blind, placebo controlled trial. Daru 2014; 22(1): 10.
9. Falkvoll S, Gerdes S, Mrowietz U. Switch of psoriasis therapy from a fumaric acid ester mixture to dimethyl fumarate monotherapy: Results of a prospective study. J Dtsch Dermatol Ges 2019. [Epub ahead of print].
10. Landeck L, Asadullah K, Amasuno A, Pau-Charles I, Mrowietz U. Dimethyl fumarate (DMF) vs. monoethyl fumarate (MEF) salts for the treatment of plaque psoriasis: A review of clinical data. Arch Dermatol Res 2018; 310(6): 475-83.
11. Lin SX, Lisi L, Dello RC, Polak PE, Sharp A, Weinberg G, et al. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 2011; 3(2): e00055.
12. Garcia-Caballero M, Mari-Beffa M, Medina MA, Quesada AR. Dimethylfumarate inhibits angiogenesis in vitro and in vivo: A possible role for its antipsoriatic effect? J Invest Dermatol 2011; 131(6): 1347-55.
13. Fox RJ, Kita M, Cohan SL, Henson LJ, Zambrano J, Scannevin RH, et al. BG-12 (dimethyl fumarate): a review of mechanism of action, efficacy, and safety. Curr Med Res Opin 2014; 30(2): 251-62.
14. Traub J, Traffehn S, Ochs J, Hausser-Kinzel S, Stephan S, Scannevin R, et al. Dimethyl fumarate impairs differentiated B cells and fosters central nervous system integrity in treatment of multiple sclerosis. Brain Pathol 2019. [Epub ahead of print].
15. Booth L, Cruickshanks N, Tavallai S, Roberts JL, Peery M, Poklepovic A, et al. Regulation of dimethyl-fumarate toxicity by proteasome inhibitors. Cancer Biol Ther 2014; 15(12): 1646-57.
16. Montes DG, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun Rev 2018; 17(12): 1240-50.
17. Gambichler T, Susok L, Zankl J, Skrygan M. Val/Val glutathione-S-transferase P1 polymorphism predicts nonresponders in psoriasis patients treated with fumaric acid esters. Pharmacogenet Genomics 2016; 26(5): 248-53.
18. Rostami-Yazdi M, Clement B, Mrowietz U. Pharmacokinetics of anti-psoriatic fumaric acid esters in psoriasis patients. Arch Dermatol Res 2010; 302(7): 531-8.
19. Cada DJ, Levien TL, Baker DE. Dimethyl fumarate. Hosp Pharm 2013; 48(8): 668-79.
20. Mrowietz U, Morrison PJ, Suhrkamp I, Kumanova M, Clement B. The pharmacokinetics of fumaric acid esters reveal their in vivo effects. Trends Pharmacol Sci 2018; 39(1): 1-12.
21. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134(Pt 3): 678-92.
22. Ahuja M, Ammal KN, Yang L, Calingasan N, Smirnova N, Gaisin A, et al. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson's-like disease. J Neurosci 2016; 36(23): 6332-51.
23. Food and Drug Administration (FDA). TECFIDERAâ„¢ (dimethyl fumarate) delayed-release capsules, for oral use [Online]. [cited 2013 Mar 27]; Available from: URL:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204063lbl.pdf
24. Qazi MA, Vora P, Venugopal C, Sidhu SS, Moffat J, Swanton C, et al. Intratumoral heterogeneity: Pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017; 28(7): 1448-56.
25. Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD, et al. GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro Oncol 2014; 16(9): 1167-75.
26. Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio E Spohr TCL, Matias D, et al. Glioblastoma therapy in the age of molecular medicine. Trends Cancer 2019; 5(1): 46-65.
27. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014; 343(6167): 189-93.
28. Kumar A, Boyle EA, Tokita M, Mikheev AM, Sanger MC, Girard E, et al. Deep sequencing of multiple regions of glial tumors reveals spatial heterogeneity for mutations in clinically relevant genes. Genome Biol 2014; 15(12): 530.
29. Gerdes S, Shakery K, Mrowietz U. Dimethylfumarate inhibits nuclear binding of nuclear factor kappaB but not of nuclear factor of activated T cells and CCAAT/enhancer binding protein beta in activated human T cells. Br J Dermatol 2007; 156(5): 838-42.
30. Seidel P, Merfort I, Hughes JM, Oliver BG, Tamm M, Roth M. Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J Physiol Lung Cell Mol Physiol 2009; 297(2): L326-L339.
31. Panday A, Inda ME, Bagam P, Sahoo MK, Osorio D, Batra S. Transcription factor NF-kappaB: An update on intervention strategies. Arch Immunol Ther Exp (Warsz) 2016; 64(6): 463-83.
32. Treumer F, Zhu K, Glaser R, Mrowietz U. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 2003; 121(6): 1383-8.
33. Yamazoe Y, Tsubaki M, Matsuoka H, Satou T, Itoh T, Kusunoki T, et al. Dimethylfumarate inhibits tumor cell invasion and metastasis by suppressing the expression and activities of matrix metalloproteinases in melanoma cells. Cell Biol Int 2009; 33(10): 1087-94.
34. Cherry EM, Lee DW, Jung JU, Sitcheran R. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-kappaB-inducing kinase (NIK) and noncanonical NF-kappaB signaling. Mol Cancer 2015; 14: 9.
35. Omur O, Baran Y. An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 2014; 90(3): 233-52.
36. Milligan SA, Nopajaroonsri C. Inhibition of NF-kappa B with proteasome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro. Anticancer Res 2001; 21(1A): 39-44.
37. Liu S, Wang Z, Hu Z, Zeng X, Li Y, Su Y, et al. Anti-tumor activity of curcumin against androgen-independent prostate cancer cells via inhibition of NF-kappaB and AP-1 pathway in vitro. J Huazhong Univ Sci Technolog Med Sci 2011; 31(4): 530.
38. Gu B, DeAngelis LM. Enhanced cytotoxicity of bioreductive antitumor agents with dimethyl fumarate in human glioblastoma cells. Anticancer Drugs 2005; 16(2): 167-74.
39. Arbiser JL. Fumarate esters as angiogenesis inhibitors: Key to action in psoriasis? J Invest Dermatol 2011; 131(6): 1189-91.
40. Meissner M, Doll M, Hrgovic I, Reichenbach G, Konig V, Hailemariam-Jahn T, et al. Suppression of VEGFR2 expression in human endothelial cells by dimethylfumarate treatment: Evidence for anti-angiogenic action. J Invest Dermatol 2011; 131(6): 1356-64.
41. Bruck J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K. A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 2018; 27(6): 611-24.
42. Ghods AJ, Glick R, Braun D, Feinstein D. Beneficial actions of the anti-inflammatory dimethyl fumarate in glioblastomas. Surg Neurol Int 2013; 4: 160.
43. Tome-Garcia J, Tejero R, Nudelman G, Yong RL, Sebra R, Wang H, et al. Prospective isolation and comparison of human germinal matrix and glioblastoma EGFR(+) populations with stem cell properties. Stem Cell Reports 2017; 8(5): 1421-9.
44. Tome-Garcia J, Doetsch F, Tsankova NM. FACS-based isolation of neural and glioma stem cell populations from fresh human tissues utilizing EGF ligand. Bio Protoc 2017; 7(24): e2659.
45. Spencer SR, Wilczak CA, Talalay P. Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues. Cancer Res 1990; 50(24): 7871-5.
46. Agarwala SS, Kirkwood JM. Temozolomide, a novel alkylating agent with activity in the central nervous system, may improve the treatment of advanced metastatic melanoma. Oncologist 2000; 5(2): 144-51.
47. Zhang J, Stevens MF, Bradshaw TD. Temozolomide: Mechanisms of action, repair and resistance. Curr Mol Pharmacol 2012; 5(1): 102-14.
48. Shafer DA, Chen ZJ, Harris T, Tombes MB, Shrader E, Strickler K, et al. Phase I trial of dimethyl fumarate, temozolomide, and radiation therapy in glioblastoma multiforme. J Clin Oncol 2017; 35(15_suppl): 2060.
49. Kumar P, Sharma G, Kumar R, Malik R, Singh B, Katare OP, et al. Stearic acid based, systematically designed oral lipid nanoparticles for enhanced brain delivery of dimethyl fumarate. Nanomedicine (Lond) 2017; 12(23): 2607-21.
50. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 2010; 7: 30.
51. Joseph JV, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S, et al. TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis 2014; 5: e1443.
52. Kunze R, Urrutia A, Hoffmann A, Liu H, Helluy X, Pham M, et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol 2015; 266: 99-111.
53. Lin-Holderer J, Li L, Gruneberg D, Marti HH, Kunze R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology 2016; 105: 228-40.
54. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018; 360(6387): 449-53.
55. Zhao X, Sun G, Zhang J, Ting SM, Gonzales N, Aronowski J. Dimethyl fumarate protects brain from damage produced by intracerebral hemorrhage by mechanism involving Nrf2. Stroke 2015; 46(7): 1923-8.
56. Albrecht P, Bouchachia I, Goebels N, Henke N, Hofstetter HH, Issberner A, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation 2012; 9: 163.
57. Liu Y, Qiu J, Wang Z, You W, Wu L, Ji C, et al. Dimethylfumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg 2015; 123(4): 915-23.
58. Jing X, Shi H, Zhang C, Ren M, Han M, Wei X, et al. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity. Neuroscience 2015; 286: 131-40.
59. Moharregh-Khiabani D, Blank A, Skripuletz T, Miller E, Kotsiari A, Gudi V, et al. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One 2010; 5(7): e11769.
60. Schilling S, Goelz S, Linker R, Luehder F, Gold R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol 2006; 145(1): 101-7.
61. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med 2015; 372(15): 1476-8.
62. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367(12): 1098-107.
63. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367(12): 1087-97.
64. Gold R, Schlegel E, Elias-Hamp B, Albert C, Schmidt S, Tackenberg B, et al. Incidence and mitigation of gastrointestinal events in patients with relapsing-remitting multiple sclerosis receiving delayed-release dimethyl fumarate: A German phase IV study (TOLERATE). Ther Adv Neurol Disord 2018; 11: 1756286418768775.
Published
2019-06-15
How to Cite
1.
Ahmadi-Beni R, Najafi A, Savar SM, Mohebbi N, Khoshnevisan A. Role of dimethyl fumarate in the treatment of glioblastoma multiforme: A review article. Iran J Neurol. 18(3):127-133.
Section
Review Article(s)