Role of C-fibers in pain and morphine induced analgesia/hyperalgesia in rats.

  • Zahra Alizadeh Mail Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Masoud Fereidoni Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Morteza Behnam-Rassouli Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Shirin Hosseini Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
Analgesia, C-Fibers, Hyperalgesia, Morphine, Pain


Background: Usual dosage  of morphine  (10 mg/kg) induces  analgesia  and ultra-low dose (ULD) of morphine (1 μg/kg); hyperalgesia, and  C-fibers are also bearing  μ- opioid receptors; here the importance  of C-fibers on pain and  morphine   induced  analgesia/hyperalgesia  is questioned   and  investigated    using   pain   evaluation methods and infant capsaicin treating  for C-fibers lesioning.
Methods: Wistar   male   rats   (200-250   grams)   were assigned  to three  categories  i.e. control, sham (receiving neonatal    capsaicin vehicle) and  c-lesion   (receiving neonatal  capsaicin), each one  with three  groups  (n = 7). They were injected intraperitoneally with single dosage of saline, 10 mg/kg or 1 μg/kg morphine, respectively. Thermal pain threshold  was evaluated  using the tail flick test before and 30 minutes  after the injections. Chemical pain was assessed using the formalin test (FT) 30 minutes after the administrations. Results:
Results:  indicated  that  thermal  (P < 0.001) and chemical  pains  in  both neurogenic and inflammatory phases  of FT (P < 0.05) were reduced  in C-lesion animals. In the C-normal and C-lesion animals, 10 mg/kg morphine exerted analgesia  both  in thermal  (P < 0.001) and  two phases of FT (P < 0.01), but it was more potent in C-lesion animals (P < 0.05). Although ULD of morphine in C-normal animals  produced  hyperalgesic effect in thermal and chemical pains (P < 0.001), in C-lesion animals, it produced analgesia (P < 0.05) at the neurogenic phase of FT.
Conclusion: Results can raise the C-fibers involvement for a significant portion of nociceptive transmission, because C-lesioning potentiated morphine  induced analgesia and eliminated ULD of morphine induced hyperalgesia.Therefore C and  Aδ fibers can be  involved in morphine analgesia; while, just C-fibers are possibly responsible  for only presynaptically hyperalgesic/excitatory action of ULD in morphine.


1. Schaible HG. Peripheral and central mechanisms of pain generation. Handb Exp Pharmacol 2007; (177): 3-28.
2. Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron 1998; 20(4): 629-32.
3. Kandel E, Schwartz J, Jessell T. Principles of neural sciences. 4th ed. New York, NY: McGraw-Hill Companies; 2000. p. 474-90.
4. Binder W, Mousa SA, Sitte N, Kaiser M, Stein C, Schafer M. Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. Eur J Neurosci 2004; 20(1): 92-100.
5. Kawasaki Y, Kohno T, Ji RR. Different effects of opioid and cannabinoid receptor agonists on C-fiber-induced extracellular signal-regulated kinase activation in dorsal horn neurons in normal and spinal nerve- ligated rats. J Pharmacol Exp Ther 2006; 316(2): 601-7.
6. Pol O, Planas E, Puig MM. Effects of morphine and liposomal morphine in a model of intestinal inflammation in mice. Pharmacology 1996; 53(3): 180-9.
7. Chen JJ, Dymshitz J, Vasko MR. Regulation of opioid receptors in rat sensory neurons in culture. Mol Pharmacol 1997; 51(4): 666-73.
8. Chen L, Zou S, Lou X, Kang HG. Different stimulatory opioid effects on intracellular Ca2+ in SH-SY5Y cells. Brain Res 2000; 882(1-2): 256-65.
9. Henriksen G, Willoch F. Imaging of opioid receptors in the central nervous system. Brain 2008; 131(Pt 5): 1171-96.
10. Powell KJ, Abul-Husn NS, Jhamandas A, Olmstead MC, Beninger RJ, Jhamandas K. Paradoxical effects of the opioid antagonist naltrexone on morphine analgesia, tolerance, and reward in rats. J Pharmacol Exp Ther 2002; 300(2): 588-96.
11. Georgoussi Z, Georganta EM, Milligan G. The other side of opioid receptor signalling: regulation by protein-protein interaction. Curr Drug Targets 2012; 13(1): 80-102.
12. Petko J, Justice-Bitner S, Jin J, Wong V, Kittanakom S, Ferraro TN, et al. MOR is not enough: identification of novel mu- opioid receptor interacting proteins using traditional and modified membrane yeast two-hybrid screens. PLoS One 2013; 8(6): e67608.
13. Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L. A comprehensive review of opioid-induced hyperalgesia. Pain Physician 2011; 14(2): 145-61.
14. Chu LF, Clark DJ, Angst MS. Opioid tolerance and hyperalgesia in chronic pain patients after one month of oral morphine therapy: a preliminary prospective study. J Pain 2006; 7(1): 43-8.
15. Hohmann AG, Herkenham M. Regulation of cannabinoid and mu opioid receptors in rat lumbar spinal cord following neonatal capsaicin treatment. Neurosci Lett 1998; 252(1): 13-6.
16. Nagy JI, Iversen LL, Goedert M, Chapman D, Hunt SP. Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat. J Neurosci 1983; 3(2): 399-406.
17. Jancso G. Pathobiological reactions of C- fibre primary sensory neurones to peripheral nerve injury. Exp Physiol 1992; 77(3): 405-31.
18. Hiura A. Neuroanatomical effects of capsaicin on the primary afferent neurons. Arch Histol Cytol 2000; 63(3): 199-215.
19. Chiang CY, Hu JW, Sessle BJ. NMDA receptor involvement in neuroplastic changes induced by neonatal capsaicin treatment in trigeminal nociceptive neurons. J Neurophysiol 1997; 78(5): 2799-803.
20. D'Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther 1941; 72(1): 74-8.
21. Kiani R, Farazifard R, Noorbakhsh SM, Esteky H. Effects of neonatal C-fiber depletion on discrimination of principal and adjacent whisker stimulation within rat individual cortical barrels. Brain Res 2004; 1015(1-2): 129-35.
22. Farazifard R, Kiani R, Noorbakhsh M, Esteky H. Effects of neonatal C-fiber 26 depletion on the integration of paired- whisker inputs in rat barrel cortex. Exp Brain Res 2005; 162(1): 115-21.
23. Kwan CL, Demaro JA, Hu JW, Jacquin MF, Sessle BJ. C-fiber depletion alters response properties of neurons in trigeminal nucleus principalis. J Neurophysiol 1999; 81(2): 435-46.
24. Fereidoni M, Javan M, Semnanian S, Ahmadiani A. Hypothalamus Pituitary Adrenal axis and stimulatory G proteins signaling role in nociceptive changes induced by forced swim stress. Physiol Pharmacol 2007; 10(4): 291-302.
25. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977; 4(2): 161-74.
26. Nagy JI, van der Kooy D. Effects of neonatal capsaicin treatment on nociceptive thresholds in the rat. J Neurosci 1983; 3(6): 1145-50.
27. Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 1987; 26(8): 1235-8.
28. Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth 2001;87(1): 3-11.
29. Ma QP. Vanilloid receptor homologue, VRL1, is expressed by both A- and C-fiber sensory neurons. Neuroreport 2001; 12(17): 3693-5.
30. Yoo CJ, Hwang SJ. The VR1-Positive Primary Afferent-Mediated Expression of pERK in the Lumbosacral Neurons in Response to Mechanical and Chemical Stimulation of the Urinary Bladder in Rats. J Korean Neurosurg Soc 2007; 42(6): 462-9.
31. Palmer ST, Martin DJ, Steedman WM, Ravey J. Effects of electric stimulation on C and A delta fiber-mediated thermal perception thresholds. Arch Phys Med Rehabil 2004; 85(1): 119-28.
32. Oscar A DL. Pain pathways and mechanisms of neuropathic pain. Conferencias Magistrales 2007; 30(Suple 1): s133-s138.
33. Ahmadiani A, Fereidoni M, Semnanian S, Kamalinejad M, Saremi S. Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J Ethnopharmacol 1998; 61(3): 229-35.
34. Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med 1995; 332(25): 1685-90.
35. Jin YH, Nishioka H, Wakabayashi K, Fujita T, Yonehara N. Effect of morphine on the release of excitatory amino acids in the rat hind instep: Pain is modulated by the interaction between the peripheral opioid and glutamate systems. Neuroscience 2006; 138(4): 1329-39.
36. Wang HB, Zhao B, Zhong YQ, Li KC, Li ZY, Wang Q, et al. Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 2010; 107(29): 13117-22.
37. Sasaki A, Nakashima Y, Takasaki I, Andoh T, Shiraki K, Kuraishi Y. Morphine inhibits herpetic allodynia through mu-opioid receptors induced in Abeta-fiber neurons. Neuroreport 2008; 19(9): 975-9.
38. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 2004; 101(14): 5135-9.
39. Wang XM, Yan JQ, Zhang KM, Mokha SS. Role of opioid receptors (mu, delta 1, delta 2) in modulating responses of nociceptive neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in the rat. Brain Res 1996; 739(1- 2): 235-43.
40. Wala EP, Sloan PA, Holtman JR, Jr. Effect of prior treatment with ultra-low-dose morphine on opioid- and nerve injury- induced hyperalgesia in rats. J Opioid Manag 2011; 7(5): 377-89.
41. Yang CP, Cherng CH, Wu CT, Huang HY, Tao PL, Wong CS. Intrathecal ultra-low dose naloxone enhances the antinociceptive effect of morphine by enhancing the reuptake of excitatory amino acids from the synaptic cleft in the spinal cord of partial sciatic nerve-transected rats. Anesth Analg 2011; 113(6): 1490-500.
42. Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Jr., Hruby VJ, et al. Antinociceptive and nociceptive actions of opioids. J Neurobiol 2004; 61(1): 126-48.
How to Cite
Alizadeh Z, Fereidoni M, Behnam-Rassouli M, Hosseini S. Role of C-fibers in pain and morphine induced analgesia/hyperalgesia in rats. Curr J Neurol. 13(1):19-27.
Special Articles